什么是无机膜
无机膜是相对有机膜而言的,以其材料为无机材料作为基础加工成膜而叫做无机膜。其发展时间比有机高聚物膜晚,但是后期发展非常迅猛,前景十分广阔。
无机膜的研究和应用始于19世纪40年代。在第二次世界大战期间,欧美等国家为了获得核裂变所需要的原料铀235,需要从天然铀矿中以UF6的形式提出。而天然铀元素由两种同位素铀238和铀235组成,前者占99.3%,是不可裂变的;后者可以裂变却不到0.7%,因为UF6是可以气化的,利用气体扩散分离技术,借助于孔径为6~40nm的无机膜,可以把铀矿中的铀235富集到近3%。于是,无机膜技术在19世纪40年代在军事领域秘密发展起来。这是历史上首次采用无机膜实现工业规模的气体混合物分级分离的实例。由于军事保密的需要,在40年代至50年代期间,有关无机膜的研究和生产,各个国家都是秘密进行的。这就是无机膜发展的第一个阶段。
20世纪70年代后,由于国际上出现两次能源危机,比利时、法国、意大利和西班牙等几个欧洲国家,共同决定在法国兴建用于发展核电站的气体扩散分离工厂,无机膜管受到新的重视。但是,各国很快就认识到,仅靠建立核动力装置发展无机膜管以及无机膜分离材料是难于持久的。不久就导致了无机膜仅仅依附于核能时代的终结。
无机膜研究应用的第二个阶段,始于工业无机膜超滤和微滤技术的创立和发展,是20世纪80年代至90年代。这个发展过程中,由于无机膜商品的大量问世及应用,已在水质处理、乳制品、饮料等工业中部分取代了有机高聚物膜。
20世纪80年代中期,无机膜的制备技术有了新的突破,当时Twente大学的Burggraf等人,采用溶胶-凝胶(Sol-Gel)技术研制出具有多层不对称结构的微孔陶瓷膜,孔直径可以达到3nm以下,这种膜已达到气体分离的等级,成为有机高聚物膜的有力竞争对手。溶胶-凝胶(Sol-Gel)技术的出现,将无机膜的研究,尤其是陶瓷膜的研制推向一个新的高潮。
20世纪90年代,无机膜的研究与应用进入第三个阶段,即以气体分离应用为主和陶瓷膜分离器—反应器组合构件的研究阶段。I
无机膜是相对有机膜而言的,以其材料为无机材料作为基础加工成膜而叫做无机膜。其发展时间比有机高聚物膜晚,但是后期发展非常迅猛,前景十分广阔。
无机膜的研究和应用始于19世纪40年代。在第二次世界大战期间,欧美等国家为了获得核裂变所需要的原料铀235,需要从天然铀矿中以UF6的形式提出。而天然铀元素由两种同位素铀238和铀235组成,前者占99.3%,是不可裂变的;后者可以裂变却不到0.7%,因为UF6是可以气化的,利用气体扩散分离技术,借助于孔径为6~40nm的无机膜,可以把铀矿中的铀235富集到近3%。于是,无机膜技术在19世纪40年代在军事领域秘密发展起来。这是历史上首次采用无机膜实现工业规模的气体混合物分级分离的实例。由于军事保密的需要,在40年代至50年代期间,有关无机膜的研究和生产,各个国家都是秘密进行的。这就是无机膜发展的第一个阶段。
20世纪70年代后,由于国际上出现两次能源危机,比利时、法国、意大利和西班牙等几个欧洲国家,共同决定在法国兴建用于发展核电站的气体扩散分离工厂,无机膜管受到新的重视。但是,各国很快就认识到,仅靠建立核动力装置发展无机膜管以及无机膜分离材料是难于持久的。不久就导致了无机膜仅仅依附于核能时代的终结。
无机膜研究应用的第二个阶段,始于工业无机膜超滤和微滤技术的创立和发展,是20世纪80年代至90年代。这个发展过程中,由于无机膜商品的大量问世及应用,已在水质处理、乳制品、饮料等工业中部分取代了有机高聚物膜。
20世纪80年代中期,无机膜的制备技术有了新的突破,当时Twente大学的Burggraf等人,采用溶胶-凝胶(Sol-Gel)技术研制出具有多层不对称结构的微孔陶瓷膜,孔直径可以达到3nm以下,这种膜已达到气体分离的等级,成为有机高聚物膜的有力竞争对手。溶胶-凝胶(Sol-Gel)技术的出现,将无机膜的研究,尤其是陶瓷膜的研制推向一个新的高潮。
20世纪90年代,无机膜的研究与应用进入第三个阶段,即以气体分离应用为主和陶瓷膜分离器—反应器组合构件的研究阶段。I