0.99999999其实是小于1的
证明如下:
0.99999999
=0.9+0.09+0.009+0.0009+。。。。
=(1-0.1)+(1-0.91)+(1-0.991)+(1-0.9991)+....
设本式中项数为n 记为n项
则易得有n个1
故可得
原式=n-[0.1+(0.91+0.991+0.9991+...)] A式
对于数列{0.91,0.991,0.9991,...}
易得通项为a/n/=0.9+0.1a/n-1/ (/n/ /n-1/表示下标 )
Sn=a/1/+a/2/+a/3/+...a/n/
=0.91+(0.9+0.1*a/1/)+(0.9+0.1*a/2/+....)
=0.9+(0.9+0.1*a/1/)+(0.9+0.1*a/2/+....)+0.1
=0.9*n+(0.1*a/1/+0.1*a/2/+....)+0.1
=0.9*n+0.1(a/1/+a/2/+a/3/+...)+0.1
=0.9*n+0.1(0.91+0.991+0.9991+... )+0.1
而Sn=0.91+0.991+0.9991+...
即
0.91+0.991+0.9991+... = 0.9*n+0.1(0.91+0.991+0.9991+... )+0.1
左右移项可得
0.91+0.991+0.9991+... = (9n+1)/9= n+1/9
将上式带入A式可得
原式=n-[0.1+n+1/9 ]
=-0.1-1/9
=-19/90
故0.99999...实际上小于1 其值为-19/90
---------------------------
雷老师,我证明出来了,0.99999。。。实际上是小于1的,看那帮官科怎么说~~~~
支持你不畏艰难和嘲笑,继续坚持把。
证明如下:
0.99999999
=0.9+0.09+0.009+0.0009+。。。。
=(1-0.1)+(1-0.91)+(1-0.991)+(1-0.9991)+....
设本式中项数为n 记为n项
则易得有n个1
故可得
原式=n-[0.1+(0.91+0.991+0.9991+...)] A式
对于数列{0.91,0.991,0.9991,...}
易得通项为a/n/=0.9+0.1a/n-1/ (/n/ /n-1/表示下标 )
Sn=a/1/+a/2/+a/3/+...a/n/
=0.91+(0.9+0.1*a/1/)+(0.9+0.1*a/2/+....)
=0.9+(0.9+0.1*a/1/)+(0.9+0.1*a/2/+....)+0.1
=0.9*n+(0.1*a/1/+0.1*a/2/+....)+0.1
=0.9*n+0.1(a/1/+a/2/+a/3/+...)+0.1
=0.9*n+0.1(0.91+0.991+0.9991+... )+0.1
而Sn=0.91+0.991+0.9991+...
即
0.91+0.991+0.9991+... = 0.9*n+0.1(0.91+0.991+0.9991+... )+0.1
左右移项可得
0.91+0.991+0.9991+... = (9n+1)/9= n+1/9
将上式带入A式可得
原式=n-[0.1+n+1/9 ]
=-0.1-1/9
=-19/90
故0.99999...实际上小于1 其值为-19/90
---------------------------
雷老师,我证明出来了,0.99999。。。实际上是小于1的,看那帮官科怎么说~~~~
支持你不畏艰难和嘲笑,继续坚持把。