全国中学生物理竞赛吧 关注:239贴子:310
  • 5回复贴,共1

[物理竞赛] 天体物理学

取消只看楼主收藏回复

天体物理学是研究宇宙的物理学,这包括星体的物理性质(光度,密度,温度,化学成分等等)和星体与星体彼此之间的相互作用。应用物理理论与方法,天体物理学探讨恒星结构、恒星演化、太阳系的起源和许多跟宇宙学相关的问题。由于天体物理学是一门很广泛的学问,天文物理学家通常应用很多不同的学术领域,包括力学、电磁学、统计力学、量子力学、相对论、粒子物理学等等。由于近代跨学科的发展,与化学、生物、历史、计算机、工程、古生物学、考古学、气象学等学科的混合,天体物理学目前大小分支大约三百到五百门主要专业分支,成为物理学当中最前沿的庞大领导学科,是引领近代科学及科技重大发展的前导科学,同时也是历史最悠久的古老传统科学。
天体物理实验数据大多数是依赖观测电磁辐射获得。比较冷的星体,像星际物质或星际云会发射无线电波。大爆炸后,经过红移,遗留下来的微波,称为宇宙微波背景辐射。研究这些微波需要非常大的无线电望远镜。
太空探索大大地扩展了天文学的疆界。由于地球大气层的干扰,红外线、紫外线、伽马射线和X射线天文学必须使用人造卫星在地球大气层外做观测实验。
光学天文学通常使用加装电荷耦合元件和光谱仪的望远镜来做观测。由于大气层会干涉观测数据的品质,还必须配备调适光学系统,或使用太空望远镜,才能得到最优良的影像。在这频域里,恒星的可见度非常高。借着观测化学频谱,可以分析恒星、星系和星云的化学成份。


IP属地:北京1楼2012-06-23 17:38回复
    中国古代天文学
    中国古代研究天文学的目的主要是历法、占卦及气象,用途多数是封建时代的权威创造或制造传说,用以愚民。由于中国封建制度维持相当长久,因此拥有全球历史上最完整的天文记录。
    中国天文学史最早可达四千年以前,并且是首个计算出木星周期的民族,木星在古代中国称为“岁星”,占卦用途的重要辅星。由西元前十八世纪起,中国历朝各代均有专属的正式天文观测单位,其特色是精于记录,善于利用于政治目的,并发展过一百多种历法,同时对哈雷彗星记录多达31次,对于天象的纪录,项目种类繁多,由日食、月食、彗星、流星、太阳黑子等等,不一而足,甚至详细至许多不明飞行物体的记载,是世界上最丰富完整的天文记录。唯独中国古代天文学不求其背景发生原因,仅用于政治目的,因此,四千年来从未有任何实质上的科学进展。由于记录详细,现代多数将中国古代天文记录用于历史天文学当中的考证,用以补足欧洲因黑暗时代所造成的大破坏时期的天文资料不足。
    中国的天文记录依地区又可分成中原地区、西南地区及北部地区天文记录:
    中原地区:主要由汉族记载,长度约四千年,是全球天文史当中最完整的记载。
    西南地区:主要由彝族及藏族记载。
    北部地区:主要由蒙古及鞑靼族记载。
    中国天文学的发展,由于长期的政教分离制,未曾受到宗教的影响,发展上记录客观详实,由于皇权及政治上的需求,数千年以来不曾中断也不曾进步。此外,少数民族的天文学史亦相当的发达。
    [编辑]中国古代天体物理学
    据考证,古代中国曾经有两批人企图建立如同欧洲的现代物理学,分别是战国时代的墨家及宋明理学家。墨家因战乱而导致所有文献遗失,宋明理学家则因政治压迫而没有继续发展下去,因而尚失科技发展的先机。道家则是对天体运行只提出说法,并无发展验证手段,不能列入科学发展的范围内。
    中国、印度及非洲是最早有太阳系结构推测记录的地区文明。
    [编辑]印度古代天文学
    印度古代天文学,在最早期的吠陀经当中便有零星的记载。
    [编辑]非洲古代天文学
    非洲古代天文学主要分成埃及古代天文学及部落天文学两个分支。埃及古代天文学本身有发展的历史纪录,非洲部分地区的部落天文学则大异其趣,有许多根本上不可能发现的精准天文知识,加上邻近地区近代发现的蓝种人、绿种人、鸵鸟人及法老王系的人种变异,此外与玛雅历法同源的天狼星历法,使得许多学者认为这些部落有其他的高级文明影响而制定这些大异其趣的天文学及历法。


    IP属地:北京2楼2012-06-23 17:38
    回复
      实测天体物理
      现代天体物理的发展方式多数采取物理数学的方法,先发展相关理论,然后再透过实测天体物理学的技术手段来验证,并且透过观测数据来修正理论上的缺失,因此常常会看到由于实测天体物理技术的发展,事后发现理论天体物理的陈述荒唐到完全无法吻合的现象,进而全面修正理论天体物理的模型。实测天体物理扮演天体物理当中最重要的把关及验证,因此,理论天体物理上的盖棺论定一向是由实测天体物理来执行,这也使得实测天体物理学家多数都是这个领域当中最保守的菁英人士在运行。
      实测天体物理目前持有全球最尖端的科技来进行研究,技术的演进,天体物理实验数据已经可以采取多种管道获得,包含了地面各类望远镜、太空望远镜及太空探测器。此外,由于需求的缘故,实测天体物理学家是目前建造超级电脑的最积极人士,全球最尖端的超级电脑有大批是由实测天体物理学家所建造及持有,其次则是高能物理学家所建造及持有,多数的实测天体物理学家同时也是电脑专家及理论物理学家,经常会透过全球虚拟天文台的数据互换来进行研究,超级运算的领域当中,有许多出身于实测天体物理学的工作者。
      [编辑]地面望远镜
      射电天体物理学通常使用数微米的波长来研究天体,是实测天体物理学研究当中最主要的重要研究手段。例如研究星间气体的冷物质及尘埃、宇宙微波背景辐射、红位移、波霎,这样的研究通常需要超大型无线电望远镜阵列。
      红外线天体物理学通常使用可见光以外的长波来研究天体。红外线观测通常使用类似光学望远镜的构造,冷光天体通常使用红外线来探测,例如系外行星探测。
      光学天体物理学是最古老的天文学。光学望远镜通常使用加装CCD和光谱仪的望远镜来做观测。由于大气层会干涉观测数据的品质,还必须配备调适光学系统,或使用太空望远镜,才能得到最优良的影像。在光谱频域里,恒星的可见度非常高。借着观测化学频谱,可以分析恒星、星系和星云的化学成份。
      紫外线天体物理学、X射线天体物理学及γ射线天体物理学研究高能量的星体活动,例如“双星波霎”、“黑洞” 、“磁星”等等,这些类型的辐射通常没有办法有效穿透地球的大气。通常有两类型的望远镜用于研究这一类的星体活动,地面的切伦可夫望远镜(IACT)及太空的电磁光谱望远镜。切伦可夫望远镜(IACT)例如地面的RXTE、钱德拉X射线天文台及康普顿伽马射线天文台。太空的电磁光谱望远镜,例如高能立体视野望远镜(H.E.S.S.)及MAGIC。
      [编辑]太空望远镜
      由于大气层会干涉观测,在太空中进行观测可以取得比较无干扰的数据,太空望远镜成为最佳的探测方式之一。
      [编辑]太空探测器
      目前全球各国已经发射数百个太空探测器在太空中进行天体物理研究。
      [编辑]全球虚拟天文台
      由于互联网的成熟,目前大部分实测天体物理学家都可以透过全球连线的虚拟天文台来获取天文数据,并且在任意舒适的地点进行数据分析研究,目前的天文数据库数量惊人,尚未进行分析的天文数据,估计可供研究达数百年。仅星系照片便达数千万颗,95%以上均尚未分类,大部分都还没有进行过初级的辨识分析,绝大多数的已知星体均尚未进行测距。


      IP属地:北京3楼2012-06-23 17:39
      回复
        理论天体物理
        理论天体物理学的起点可由十六世纪开始计算起,绝大多数的理论提出系以“物理建模方法”提出假设,建立物理模型,验证方法则多数以“波普尔论证法”来进行确认,主要采取“证实主义”或“证伪主义”两种手法交错并用。理论的状态多数有以下几种:
        全部理论证实:目前不存在。
        部份理论证实:例如“广义相对论”及“牛顿力学”。
        理论证伪:为数庞大,例如,中国的“混天说”。
        技术力无法验证理论:例如,“黑洞理论”及“夸克星”,通常都是理论当中存在尚未验证的物理假说。
        理论错判证实:例如,“牛顿力学”曾经被错判证实。“夸克星”则曾经有两年的时间被认为已经找到(SN1987A,约1989-1990年之间被错误地认为存在夸克星)。
        理论错判证伪:例如,目前的“智慧设计论”及过去的“宇宙学常数”,“智慧设计论”该理论其实只是目前没有办法证实而已,“智慧设计论”内容其实相当广泛地隐性存在于天体物理学当中的各个分支里面,而这些理论远早于“智慧设计论”的出现之前就已经提出。
        伪科学:数量庞大的民间学说,例如一整批以科幻小说为基础的幻想学说、科普及神学天体物理,通常的特征是理论自身不自洽。例如,“星际之门虫洞物理”,“星际之门”当中的“虫洞物理”与现实研究中的“虫洞物理”差距非常地大,而目前现实中的“虫洞物理”,实际也并未被列入合格的天体物理理论,实际的“虫洞物理”认为“虫洞”的大小如果小于一光年,则无任何可能传送任何物质进行太空旅行,“星际之门虫洞物理”与此差距极大,而开启虫洞颈部的维持能量是“负能量”,“星际之门虫洞物理”却是使用“正能量”来维持,“量子虫洞”是采用“虚粒子对相互作用”来维持“量子虫洞”的恒稳态,能够穿透“量子虫洞”的只有超流体,而“星际之门虫洞物理”却是什么物质都可以传送。事实上两者的说法都没有经过检验。
        未经检验的假说:例如,“人造月球假说”及“平行宇宙”与一整批与霍金宣称有关的说法。由于通俗易懂、貌似合理,检验方法却需要耗费大量金钱,因而大批未经检验的假说在民间流传,被误认为已经检验的正统科学,透过大众文化传播,成为非专业信徒型学科。
        绝大多数的天体物理理论都处于“部份理论证实”及“技术力无法验证理论”的状态,基本的过滤方式是“证实方法”或“证伪方法”,持续过滤到每一个步骤都与数据吻合。
        现代理论天体物理学家使用多样的研究工具,包含了分析模型及计算机数值模拟,分析模型可以提供每一个步骤是否吻合现行或假设的物理定律,计算机数值模拟则主要用于推算出物理数学模型是否有矛盾之处。理论天体物理学家致力于发展理论模型以便理解这些模型与观测的拟合程度,这可以使观测者证实或证伪某个模型是否正确,并且从模型当中选择一个恰当的理论来说明观测数据。
        一旦某个物理模型大体上被验证,实测天体物理学家就会依据该模型输入观测资料,一旦发现某些不吻合之处,该理论就会进行修正,直到全面吻合,所有观测数据都合乎理论预测以后,便可称该理论为已经证实的天体物理理论。如果,理论与数据有大批不吻合,该理论会先被限定为有限理论,一直到发展出其他可以全面吻合的理论以后,该理论会被废弃掉。
        理论天体物理研究的范围非常地广泛,包含了:“星体动力”、“星体演化”、“银河生成及演化”、“电磁动力”、“广义相对论”、“宇宙学”、“弦宇宙论”、“天体粒子物理”、“引力波”、“宇宙生命”、“宇宙航行”、“宇宙通讯”等等,课题包罗万象。
        某些广为人知而被深入研究的验证理论,诸如“∧-CDM模型”、“大爆炸理论”、“宇宙膨胀”及一整批的基本物理定律。诸如“黑洞”、“虫洞”等等,都是尚未被验证的理论。
        理论天体物理并非真正的科学,它扮演科学进程当中的“大胆假设”,有时候会因为过度地使用假设而导致“伪科学”结论,发展的过程当中会发生大量错误及后续修正,未经求证过程的天体理论是不能被称为科学理论的,目前有大量的天体物理理论是处于并未求证而被广泛流传的,最著名的误解之一即为“黑洞已经验证存在”,实际上是完全错误的科普误导。会发生这种情形的根源多数出于领域当中的大师或名人之说,由于大众文化出于经济动力对于“宣传性造星”有需求,因此将大师或名人未经检验的假说断章取义地进行强力宣传,而事后却发现假说根本尚未经过检验。


        IP属地:北京4楼2012-06-23 17:40
        回复
          明天
          继续


          IP属地:北京5楼2012-06-23 17:46
          回复
            积极性


            IP属地:北京9楼2012-06-24 17:15
            回复