18.量子隐形传输(一)
无论是量子信息、量子密码、量子计算等等,所有想要在计算或通讯中应用量子力学规律的领域,都离不开一个基本的位元:量子比特。从前面的章节我们已经了解到,量子比特是一个量子态,由于量子态的叠加性质,n个量子比特能够表示的状态数比n个经典比特能表示的状态数多得多,因此,量子比特比经典比特听起来更强大、更有用多了。不过,我们也知道,量子态是不确定的、难以对付的。除此之外,它还有个经典比特完全没有的性质:不可克隆定理。
量子态不可克隆定理说: 一个未知的量子态是不可克隆的。有学者在1982年(见参考资料)从量子态叠加原理的推论,而证明了这个定理。在此,我们只是从测不准原理来粗浅地理解这个定理:从经典'克隆'的意义上说,要想精确地复制一个物品,首先就要得到(测量)这个物品的所有的信息。然而,对一个遵循量子规律的系统(比如量子比特),我们不可能同时精确测量它的所有物理量,因为根据"海森堡测不准原理",在同一时刻以相同精度测定量子的位置与动量是不可能的,我们只能精确测定两者之一。
从量子论的观点而言,测不准原理应该被称为"不确定性原理"更恰当一些。但如果使用经典的图像来想象微观世界的话,叫做"测不准"可能还更容易理解。比如,以测量电子为例,所谓测量,一定要使用测量方法和工具,要对电子进行测量,最好的方法就是使用激光去与电子相互作用。原子中的一个电子,从经典角度看,它的运动轨道是如此之小(10-10米),它的运动速度又是如此之快(106米/秒),在这种快速运动情形下的电子,被测量它的光子顶头一撞,速度和位置都全变了,又怎么可能测得准呢?
比如说,利用光被电子散射,可以测量电子的位置,但不可能将粒子的位置确定到比光的波长更小。所以,要想将位置测量准确,必须用更短的波长的光,而波长更短的光子具有更大的能量,就对电子的速度产生更大的扰动,使得速度更不能测准,反过来说也是一样。
"量子不可克隆定理",是指在不知道量子状态的情况下复制单个量子是不可能的,因为要复制单个量子就只能先作测量,而测量必然改变量子的状态。我们在介绍量子比特时提到过,一个qubit有两个自由度,由于测不准原理的限制,我们无法准确地测量这两个自由度,因此也就无法精确地克隆出这个量子比特的状态。
量子态不可克隆,这是在通讯中使用量子比特的极大优越性。这个优点保证了量子密码、量子通讯的安全性。但是,也由此而为它在通讯上的真正应用设置了难以逾越的障碍。在我们现代社会中铺天盖地的通讯网中,每秒钟都在复制、传输着天文数字个比特的信息。仅拿一台ADSL上网的计算机来说吧,如果网速是512Kbps,那就是每秒钟传输51.2万个比特。可是,量子比特怎么办呢?连复制都不行,如何传输呢?
科学家总能想出一些窍门,不能克隆没关系,我们照样传输它们!这就是近年来在这个行业内热门的话题,叫做"量子隐形传输"。
美国的国际商业机器公司(IBM)不愧是计算机行业的龙头老大,它不仅引领着传统的经典计算机的研发和制造,在量子计算机的研究方面,几十年来也独树一帜,不论在理论方面,还是实验方面,都进行了大量的研究工作。比如上一节中提到过的"可逆计算" 的IBM科学家R. Landauer,他在1961年对"可逆计算"的研究就与量子计算机研究有关。
"量子隐形传输"的理论设想,是由另一位IBM研究中心的研究员,查尔斯·亨利·贝内特最先提出来的。贝内特1943年生于美国纽约市,既是一位物理学家,又是信息理论学家,是现代量子信息理论的开山鼻祖之一。 贝内特1970年从哈佛大学得到博士学位后,于1972年加入IBM的研究队伍。在IBM,他做了大量有关量子信息学方面的工作。他曾经提出对麦克斯韦妖的重新解释,他与同行们合作开发了BB84量子密码协议,并建立了世界上第一个量子密码的工作演示。
1993年,Bennett等六人团队,在"物理评论快讯"上发表文章,提出"量子态隐形传输"的设想。设想将一个未知量子态的完整信息,合作通过两个独立的通道(经典和量子)发送出去,在新的远离的位置重新组合后,产生一个在发送过程中被破坏了的原始量子态的精确副本。
贝内特等人的想法可由下图说明:
无论是量子信息、量子密码、量子计算等等,所有想要在计算或通讯中应用量子力学规律的领域,都离不开一个基本的位元:量子比特。从前面的章节我们已经了解到,量子比特是一个量子态,由于量子态的叠加性质,n个量子比特能够表示的状态数比n个经典比特能表示的状态数多得多,因此,量子比特比经典比特听起来更强大、更有用多了。不过,我们也知道,量子态是不确定的、难以对付的。除此之外,它还有个经典比特完全没有的性质:不可克隆定理。
量子态不可克隆定理说: 一个未知的量子态是不可克隆的。有学者在1982年(见参考资料)从量子态叠加原理的推论,而证明了这个定理。在此,我们只是从测不准原理来粗浅地理解这个定理:从经典'克隆'的意义上说,要想精确地复制一个物品,首先就要得到(测量)这个物品的所有的信息。然而,对一个遵循量子规律的系统(比如量子比特),我们不可能同时精确测量它的所有物理量,因为根据"海森堡测不准原理",在同一时刻以相同精度测定量子的位置与动量是不可能的,我们只能精确测定两者之一。
从量子论的观点而言,测不准原理应该被称为"不确定性原理"更恰当一些。但如果使用经典的图像来想象微观世界的话,叫做"测不准"可能还更容易理解。比如,以测量电子为例,所谓测量,一定要使用测量方法和工具,要对电子进行测量,最好的方法就是使用激光去与电子相互作用。原子中的一个电子,从经典角度看,它的运动轨道是如此之小(10-10米),它的运动速度又是如此之快(106米/秒),在这种快速运动情形下的电子,被测量它的光子顶头一撞,速度和位置都全变了,又怎么可能测得准呢?
比如说,利用光被电子散射,可以测量电子的位置,但不可能将粒子的位置确定到比光的波长更小。所以,要想将位置测量准确,必须用更短的波长的光,而波长更短的光子具有更大的能量,就对电子的速度产生更大的扰动,使得速度更不能测准,反过来说也是一样。
"量子不可克隆定理",是指在不知道量子状态的情况下复制单个量子是不可能的,因为要复制单个量子就只能先作测量,而测量必然改变量子的状态。我们在介绍量子比特时提到过,一个qubit有两个自由度,由于测不准原理的限制,我们无法准确地测量这两个自由度,因此也就无法精确地克隆出这个量子比特的状态。
量子态不可克隆,这是在通讯中使用量子比特的极大优越性。这个优点保证了量子密码、量子通讯的安全性。但是,也由此而为它在通讯上的真正应用设置了难以逾越的障碍。在我们现代社会中铺天盖地的通讯网中,每秒钟都在复制、传输着天文数字个比特的信息。仅拿一台ADSL上网的计算机来说吧,如果网速是512Kbps,那就是每秒钟传输51.2万个比特。可是,量子比特怎么办呢?连复制都不行,如何传输呢?
科学家总能想出一些窍门,不能克隆没关系,我们照样传输它们!这就是近年来在这个行业内热门的话题,叫做"量子隐形传输"。
美国的国际商业机器公司(IBM)不愧是计算机行业的龙头老大,它不仅引领着传统的经典计算机的研发和制造,在量子计算机的研究方面,几十年来也独树一帜,不论在理论方面,还是实验方面,都进行了大量的研究工作。比如上一节中提到过的"可逆计算" 的IBM科学家R. Landauer,他在1961年对"可逆计算"的研究就与量子计算机研究有关。
"量子隐形传输"的理论设想,是由另一位IBM研究中心的研究员,查尔斯·亨利·贝内特最先提出来的。贝内特1943年生于美国纽约市,既是一位物理学家,又是信息理论学家,是现代量子信息理论的开山鼻祖之一。 贝内特1970年从哈佛大学得到博士学位后,于1972年加入IBM的研究队伍。在IBM,他做了大量有关量子信息学方面的工作。他曾经提出对麦克斯韦妖的重新解释,他与同行们合作开发了BB84量子密码协议,并建立了世界上第一个量子密码的工作演示。
1993年,Bennett等六人团队,在"物理评论快讯"上发表文章,提出"量子态隐形传输"的设想。设想将一个未知量子态的完整信息,合作通过两个独立的通道(经典和量子)发送出去,在新的远离的位置重新组合后,产生一个在发送过程中被破坏了的原始量子态的精确副本。
贝内特等人的想法可由下图说明: