“曹冲称象”[2] 在中国几乎是妇孺皆知的故事。年仅六岁的曹冲,利用漂浮在水面上的物体的重力等于水对物体的浮力这一物理原理,解决了一个
曹冲称象原理
连许多有学问的成年人都一筹莫展的大难题,这不能不说是一个奇迹。可是,在那个年代(公元200年),虽然阿基米德原理已经发现了500年,但这一原理直到1627年才传入中国,小曹冲不可能知道这个原理,更不用说浮沉条件了。
实际上,聪明的曹冲所用的方法是“等量替换法”。用许多石头代替大象,在船舷上刻划记号,让大象与石头产生等量的效果,再一次一次称出石头的重量,使“大”转化为“小”,分而治之,这一难题就得到圆满的解决。
等量替换法是一种常用到的科学思维方法。这里再讲一个爱迪生的小故事。美国大发明家爱迪生有一位数学基础相当好的助手叫阿普顿。有一次,爱迪生把一只电灯泡的玻璃壳交给阿普顿,要他计算一下灯泡的容积。阿普顿看着梨形的灯泡壳,思索了好久之后,画出了灯泡壳的剖视图、立体图,画出了一条条复杂的曲线,测量了一个个数据,列出了一道道算式。经过几个小时的紧张计算,还未得出结果。爱迪生看后很不满意。只见爱迪生在灯泡壳里装满水,再把水倒进量杯,不到一分钟,就把灯泡的容积“算”出来了。这里,爱迪生用倒入量杯里的水的体积代替了灯泡壳的容积,用的也是等量替换法。