(1)
由f(x)=x^3-ax-1得f'(x)=3x^2-a
(a)当a≤0时,f'(x)≥0,故f(x)在R内单增
(b)当a>0时,令f'(x)=0得x=±√(a/3),
故x∈(-∞,-√(a/3)]∪[√(a/3),+∞)时,f(x)单增a>0
x∈(-√(a/3),√(a/3))时,f(x)单减
(2)
由f(x)=ln(e^x+1)-ax,a>0
得f'(x)=e^x/(e^x+1)-a
令f'(x)=-f'(-x)得e^x/(e^x+1)-a=-[e^(-x)/(e^(-x)+1)-a],
e^x/(e^x+1)-a=-[1/(e^x+1)-a]
e^x/(e^x+1)+1/(e^x+1)=2a
1=2a
a=1/2