安吉教师吧 关注:15贴子:220
  • 6回复贴,共1

宇宙边缘是什么?

只看楼主收藏回复





宇宙边缘是什么?
如果把人类观测到的130多亿光年当成宇宙边缘,那似乎有点看不清宇宙了!望远镜改变了人类认识自己和认识自然的方式。随着一架比一架更先进的望远镜的问世,人类看得更远,知道的也更多。现在,就让我们来回顾一下充满趣味的望天历程,并且在此过程中——
八层楼高的巨型门滑开,一双巨大的“眼睛”将它的“目光”投向太空最深处——这就是大名鼎鼎的“大型双筒望远镜”。作为地球上最强大的望远镜之一,位于美国亚利桑那州的这架大型双筒望远镜价值超过1.2亿美元,它那直径超过8米的镜子能搜集到只有人眼可见光强度的百万分之一甚至千万分之一的光线。这架600吨重的机械望远镜的能见距离超过130亿光年,也就是我们所在宇宙的最边缘。


本楼含有高级字体1楼2015-11-01 08:31回复
    像大型双筒望远镜这样的超级望远镜能拍摄到天空中哪怕最黑暗角落的实时图像。从这些图像上我们可以看到。如巨浪翻滚的气体和尘埃云正在与超音速风搏斗,其搏斗场景被成千上万颗充满活力的新生恒星点亮。这些高达92万亿千米的巨型云团其实正是“恒星产房”,它们是恒星群诞生的地方。
    突然,一颗恒星的爆发性死亡发出的超热气体以每秒上千千米的速度撕裂太空;与此同时,在遥远星系中,一个超大质量黑洞——宇宙中最神秘的物体之——正在发出不可见的能量射流。借助高科技的望远镜,无论是对恒星爆发产生的超热气体,还是对超大质量黑洞发出的能量射流,天文学家都能为其拍摄照片。
    自第—架望远镜于17世纪诞生以来,短短几百年间望远镜已经改变了人类认识自己和认识自然的方式。随着一架比一架更先进的望远镜的问世,人类看得更远,知道的也更多。


    本楼含有高级字体2楼2015-11-01 08:32
    回复
      【认识太阳系】


      1609年夏天,意大利数学教授伽利略·加里雷正在完成自己的一项发明,那是一架被叫做“望远镜”的东西。在古希腊文中,这个名词的意思是“能看见远处的东西”。很快,他的新发明像野火燎原一样蔓延整个欧洲。
      当时,在荷兰的一个小镇,眼镜制造者在制作精确的透镜时发现,假如把两类不同的透镜以相隔合适的距离放置,就能产生令人吃惊的光学效果——这两面透镜起着放大远处物体的作用。伽利略立即意识到了这一发现的潜在意义。他利用这个原理制作出了可见距离为人眼可见距离8倍的望远镜。很快,成尼斯军队买下这架望远镜,用来监视敌人的船队。接着,伽利略又将望远镜对准太空,从而开始了一场革命。在伽利略之前,所有天文学家都认为天宇就是他们裸眼能看见的一切——星星和月亮。他们用肉眼看到,天空中有5颗星有时比其他星星都亮,如果连续数夜观察,这5颗星在其他群星的背景上移动,并且这5颗星时而可见时而不可见。
      他们称这5颗星为“行星”,这个名字在希腊文中是“流浪者”之意。其中,金星被称为晚星,它总是在日落时分掠过地平线;火星亮得有些发红;木星和土星比周围的星星都亮。我们现在已经知道这些“流浪”的星星实际上都是像地球一样的行星,但在伽利略时代,每个人都相信这5颗星只不过是一般的星星。宇宙中只有一个世界,那就是地球,地球是宇宙的中心,白天太阳围着地球转,月球和其他星星则在漫漫长夜里以巨大的勒轨道绕地球打转。


      本楼含有高级字体3楼2015-11-01 08:33
      回复
        然而,伽利略向人们证明:这不过是错觉而已。当伽利略开始用望远镜观察月球时,人们已知的世界秩序也就开始被打破。在旧的宇宙学中,所有的天体都是完美无缺的,月球是一个天体,因而它在人们眼中也是完美的。但是,穿越40万千米的太空,伽利略所看到的月球远不如他所期望的那样平滑——月球表面实际上布满疮痍,到处是陨击坑和峡谷。
        既然在月球上并不鲜见地球地貌,那么地球在宇宙中自然也就算不上独一无二了。这还只是一个开端。接下来,伽利略将望远镜瞄准了木星——“流浪的星星”之一。裸眼看去,木星是一颗明亮的星,确切说是一个光点。透过伽利略的望远镜看去,所有其他星星都只是光点,而木星突然变成了一个大得多的圆盘。尽管望远镜的镜头质量不佳,无法看清木星的真面目,但根据透过望远镜所看到的模糊不清且摇晃厉害的木星图像,伽利略做出了一个伟大的结论:木星一定是球形的另一个世界(也就是我们今天所说的另一颗行星)。
        在木星周围,伽利略有了更惊人的发现。他透过望远镜看见,木星旁边还有两到四颗星,它们就像小鸭跟在木星这个“大鸭”的后面。夜复一夜,伽利略注意到这些新星的位置不断变动。在观察这些“小鸭”一两周之后,伽利略意识到它们其实是环绕木星的卫星(木卫)。伽利略知道自己获得了重大发现,并且把这些发现写在了他出版的《星之信使》一书中。
        然而,更大的发现还在后面——伽利略的观察记录将永远改变人类的宇宙观。伽利略当时观察到,金星在一个月里不断地改变其形状和大小。具体而言,伽利略发现,金星每个星期都在改变,从一个大新月形变成一个小圆盘,接着阴影再次爬上金星,让它又回复到大新月形。伽利略认为,他在金星上看到的阴影只可能意味着一件事:金星在围绕太阳运行。这就是说,与当时人们的信仰—每个天体都围绕地球转不同,地球不再是宇宙的中心。
        对于伽利略的这些发现,当时的罗马天主教会非常不满,因为教会向人们灌输的观点是:上帝把人类放在地球上,也就是放在了创世的正中心。以太阳为中心的宇宙挑战了教会的权威,教会对此当然不能容忍。然而,伽利略对太阳系的认识是完全正确的,他的发现永久性地改变了世界。


        本楼含有高级字体4楼2015-11-01 08:34
        回复
          这场变革的第一步是尽量增加望远镜的长度。让我们回到17世纪50年代。早期望远镜的一个主要问题是影像模糊,原因在于透镜的形状。当用一个强弯曲度的镜头来折射光线时,光线不能全部汇集到一个点,因而影像模糊;此外,一些光线的颜色可能出现分色——彩虹色,这也会扭曲图像。
          尽量避免模糊与彩虹色的唯一方法就是使用更薄的透镜,透镜的弯曲度也应更小,但这样一来光线的聚焦点就远离了透镜,结果是折射望远镜的放大倍数越大则望远镜的长度也就越长。到了大约1660年,望远镜的放大倍数已增加到50—100倍,与此同时,望远镜的长度也达到了荒谬的程度:最长竟超过45米,也就是相当于一个橄榄球场的—半长度了。
          如此笨重的望远镜的确效果更好,但天文学家希望看到更多的细节,而这些望远镜依然无法消除彩虹色。接着,最伟大的科学巨匠之一伊萨克·牛顿开始着手解决这个难题。他关注的是光线本身。牛顿发现,白光其实是由所有不同颜色的光组成的,这些颜色共同构成了彩虹色。当白光透过一面玻璃棱镜时它会折射分解成彩虹色,这就是天文学家碰到的透镜望远镜难题的根源。于是牛顿想到:好了,我们必须全盘抛弃折射望远镜,因为它已到穷途末路,我要设计出新型望远镜,它不能使用透镜。
          牛顿在他的新型望远镜上使用的是镜子,他坚信镜子照样能达到并超过折射望远镜的效果,这是因为当镜面弯曲时一样能让光线聚焦。实际上,用这样的镜子聚焦阳光的确能点燃纸张。但镜子和透镜有一个本质的区别:光线从镜子表面反射,而不是穿越镜子,因而就避免了彩虹色。牛顿制作了一架小小的镜面望远镜,其长度不到20厘米。他将一面直径仅为3.8厘米的弯曲的镜子安装于望远镜镜筒的底端,来自天宇的光线进入镜筒,到达弯曲的镜面并反射,接着再到达一个不弯曲的镜面并反射,最终聚焦于目镜。这么一架小小的镜面望远镜,同长度超过120厘米的透镜望远镜效果一样好。
          牛顿运用镜子制作望远镜,一举消除了彩虹色这个自伽利略时代以来一直困扰着望远镜的难题。今天,望远镜从分布于世界各地的天文台望向太空。不断扩展人类的宇宙视野,捕捉发射于几十亿年前并穿越我们所在宇宙的光线。所有这些望远镜都依赖于形状完美的大型镜子,而制造出这些镜子是精密工程学的丰功伟绩。
          在美国亚利桑那大学的足球场的地面下深处,是一个高科技镜子实验室。在那里,玻璃块在巨大的熔炉中于1100℃以上的高温下被熔化,这一温度相当于火山熔岩的温度。接着,炽热的玻璃液被旋进超光滑的弯曲碟子中。20吨重的碟形冷却玻璃接下来被用直径不到人发丝的粉末进行打磨,以制作精确的形状。最终,覆上一层厚度仅为100纳米的极薄的铝膜,玻璃碟就变成了镜子。亚利桑那大型双筒望远镜的镜面就是这样制成的。其中每个镜面的直径超过8.5米,面积是牛顿制作的第一面镜子的64000倍,能够捕捉来自数十亿光年距离以外的光线。
          回溯到牛顿时代,要想制造形状正好的大型镜子真是难上加难。在牛顿之后100年,一个新的先驱重拾起牛顿的革命性设计,并将它加以革新。这个人就是英国单簧管演奏家兼业余天文学家威廉·赫歇尔。虽然身为音乐家和作曲家,赫歇尔的真正兴趣却在天文学,他有一个雄心壮志,就是使用大型的牛顿式镜面望远镜望向更深的太空,要比所有前人都望得更远。


          本楼含有高级字体6楼2015-11-01 08:34
          回复
            19世纪初,英国物理学家渥拉斯顿制造了一架分光镜,用来分析太阳光。这是一架破译光线密码的仪器,它能像雨后彩虹那样把白色太阳光分离成五彩缤纷的光谱,让隐藏在光谱里的宇宙奥秘暴露在天文学家面前。分光镜之所以具有奇妙的功能,源于光线是一种电磁波,每一种颜色都有自己的波长。红、橙、黄、绿、青、蓝、紫七种颜色的波长依次变短,频率依次变高,红光波长较长,频率较低,紫光波长较短,频率较高;白光是红、橙、黄、绿、青、蓝、紫七种颜色的光线混合而成的。因此,利用分光镜可以分析出天体发射的光线里含有哪些成分。换句话说,利用分光镜可以破译天体光线的密码,获取天体的信息。
            1842年,奥地利物理学家和数学家克里斯琴·约翰·多普勒提出一条原理,被称为“多普勒原理”。该原理指出,当发射光线的物体相对于观测者运动时,观测到光线的波长要发生变化——光源向观测者运动时,光被压缩,波长变短,频率变高,出现蓝移(也称紫移);相反,当光源背离观测者运动时,光被拉伸,波长变长,频率变低,出现红移。光源运动的速度越高,这种效应越显著。因此,根据光线是红移还是蓝移,可以计算出光源在视线方向的运动方向,根据红移或蓝移的大小,可以计算出光源在视线方向的运动速度。根据多普勒原理,恒星光谱线的位移既能显示恒星是向着还是背着观测者运动,也能据此计算出恒星的运动速度大小。
            1928年,哈勃利用多普勒原理研究新发现的星系的红移,借以找出星系的移动速度。他分析了许多星系的速度,并按照星系的远近列成表,观察它们的速度同星系距离的关系,结果得出了一个令人震惊的结论:离我们越远的星系红移越大,远离的速度越快。1929年,他在星系速度与距离之间建立了一个有趣的关系:离开越远的星系红移越大,远离的速度也越大。这就是著名的哈勃定律。由这条定律得出结论:宇宙在膨胀。
            哈勃的发现引出一个问题:如果宇宙在膨胀,那么是什么促使它膨胀的呢?天文学家从哈勃的发现中寻找出答案。哈勃发现,宇宙中的星系在相互移开,用天文学上的术语,叫做“退行”,而且是自然“移开”的。所谓宇宙在膨胀,并非星系在离开我们,而是空间本身在伸展。也就是说,宇宙和星系就像练球房和球一样,球是星系,练球房就是宇宙,练球房“膨胀”了,球与球之间的空间自然就增大了。科学家由此想到:在过去某些时间,“练球房”和“球”不都在一个中心点吗?追溯到过去,中心点——宇宙的爆发点温度比现在高,密度比现在大,而且越早期温度越高,密度也越大。宇宙是从一个高温、高密状态膨胀演化而来的。因此,苏联著名天文学家伽莫夫在20世纪50年代提出了大爆炸宇宙学理论。
            根据这一理论,大爆炸发生在一瞬间,而宇宙就是在这个瞬间诞生的。宇宙诞生以后,曾有一段从热到冷的演化史。在这个时期,宇宙体系并不是静止的,而是在不断膨胀,使物质密度从密到稀演化。根据大爆炸宇宙学,大爆炸的整个过程是:在宇宙早期,温度极高,在100亿K(开氏度)以上,物质密度也相当大,整个宇宙体系达到平衡,那时宇宙间只有中子、质子、电子、光子和中微子等一些基本粒子形态的物质;由于整个宇宙体系在不断膨胀,结果温度很快下降,当温度下降到10亿K左右时,中子开始失去自由存在的条件,或者发生衰变,或者与质子结合成重氢和氦等元素,开始形成化学元素;当温度进一步下降到100万K后,早期形成化学元素的过程结束,宇宙间的物质主要是质子、电子、光子和一些比较轻的原子核;当温度下降到几千摄氏度时,辐射减退,宇宙间的物质主要是气态物质,气体逐渐凝聚成气体云,再进一步演化形成各种各样的恒星、星系和星系团,成为我们今天看到的宇宙。


            本楼含有高级字体11楼2015-11-01 08:38
            回复
              在当代天文界,有两种设备获得很高的声誉,一是“哈勃”,二是地面超级望远镜组成的庞大网络系统。前者因揭示了宇宙的许多奥秘而光环闪烁,后者则因调查了一项轰动整个天文学界的发现而备受好评。这项发现就是迫使我们改变对我们头顶上宇宙的许多看法的神秘力量——“暗能”。美国《科学》杂志评价说,“发现暗物质和暗能存在的新证据,是2003年所取得的最重大科学突破。”
              暗能是迄今发现的最神秘的东西,对于它科学家至今仍无深刻了解。暗能是从无有(或称真空)中产生的。暗能的发现是偶然与必然相结合的结果。在20世纪90年代中期,一个包括阿列克斯·费利彭科在内的天文学家小队来到夏威夷莫纳克亚山上的凯克天文台观测遥远的宇宙。他们知道宇宙是膨胀的,但怀疑宇宙是否能一直膨胀下去。他们有一个理论:宇宙实际上有可能停止膨胀和开始减慢膨胀。他们认为,这如同向空中抛苹果,地球对苹果的吸引力使苹果向上的速度越来越小,最后停止运动并向相反方向运动。所有星系之间都有相互吸引力,这些力都可以使宇宙膨胀变慢、停止,然后变成向相反方向膨胀,成为一次“大收缩”。
              宇宙真的能自己往回收缩吗?要回答这个问题,需要在地球上测量宇宙边缘的速度。由于距离遥远,这种测量需要最强大的望远镜。这时,直径10米的凯克望远镜吸引了许多观测者。凯克望远镜是由3献边形镜片组合而成的,是一架极其出色的天文望远镜,它能使我们对120亿光年远的可见宇宙边缘的星系逐个进行观测。但是,就像其他地面望远镜一样。为了找出这些遥远星系的实际距离,需要有“标准烛光”。哈勃当初是用造父变星作“标准烛光”的,但要测量比哈勃测量的远得多的星系,造父变星就显得太暗了。所以,天文学家现在测量遥远星系时采用的“标准烛光”是Ia型超新星。他们利用Ia型超新星测量了红移,计算出这些遥远的星系远离地球的速度。经过几年的观测和计算,他们在1998年得出令人震惊的结论:宇宙膨胀完全不是减慢,而是加速。因此,用扔苹果类比的想法是错误的,这是由于推动宇宙加速膨胀的不是引力,而是一种神秘的力——斥力,天文学家称为“暗能”。
              “暗能”是什么?它对宇宙运动加速起了什么作用?目前这些都是谜。暗能是一种假想的物质,很均匀,很稀薄,密度约为每立方厘米10的负29次方克。正因为暗能很稀薄,所以很难在实验室里探测它,只能通过它造成的宇宙加速膨胀来了解它的存在。根据现代“宇宙学标准模型”,它建立起73%~74%的宇宙能量。有人提出这样一些疑问:在暗能推动下,宇宙会一直加速膨胀下去吗?长期加速膨胀下去的宇宙最终会爆裂吗?这些问题目前都无答案。


              本楼含有高级字体14楼2015-11-01 08:39
              回复