数学吧 关注:888,798贴子:8,749,281
  • 6回复贴,共1

怎么证明实数范围内的指数运算法则?

只看楼主收藏回复

如题,求大佬解答


IP属地:陕西来自Android客户端1楼2022-07-10 16:30回复
    需要高等数学的知识,首先你要定义e,然后就可以知道exp(x),然后普通的指数就定义成ax=exp(xlna).
    exp(x)定义为∑x^n/n!当n趋近于∞的极限(极限这个概念高中是不是非形式地讲了),接下来的证明需要所谓级数的知识,实际上就是硬算,把上面定义的乘起来。通过讲变量换为iz,就可以证明欧拉公式,因为cos和sin不过是将e的奇数项和偶数项取出来加上-1的n次方。根据欧拉公式,三角函数的一些定理就可以证明出来了。(另外说一句,在复数的意义下,exp其实是周期函数)。
    通过一个叫反函数定理的东西,可以证明e的反函数ln的存在,进而通过e的运算法则推到出log的运算法则。
    如果想了解细节,可以找本数学书或者上网,关键词是级数中的cauchy product of series(级数的柯西乘积)。也可以去维基百科看看,应该有


    IP属地:四川来自Android客户端2楼2022-07-10 19:37
    收起回复
      这是指数函数的公理化定义,不需要证。



      IP属地:北京来自Android客户端3楼2022-07-10 19:46
      收起回复
        指数函数有很多等价的定义,从其中一个出发就可以推出其他(选择一个作为基本定义,其他定义就变成这个基本定义的性质了)。


        IP属地:安徽来自Android客户端4楼2022-07-11 18:59
        回复
          这是我在一本微积分书上看到的思路


          IP属地:安徽来自Android客户端5楼2022-07-11 19:06
          回复