1/a+1/(a-b)+1/(a-c)=1, 1/b+1/(b-a)+1/(b-c)=1, 1/c+1/(c-a)+1/(c-b)=1
三个式子相加得到1/a+1/b+1/c=3 ①
三个式子分别乘1/a, 1/b, 1/c 相加得到 1/a²+1/b²+1/c²-1/ab-1/ac-1/bc = 1/a+1/b+1/c
左边等于 (1/a+1/b+1/c)²-3(1/ab+1/ac+1/bc),再代入①得到 1/ab+1/ac+1/bc = 2 ②
三个式子分别乘1/a², 1/b², 1/c²得到 1/a³+1/b³+1/c³-1/a²b-1/a²c-1/b²a-1/b²c-1/c²a-1/c²b = 1/a²+1/b²+1/c²
左边等于 (1/a+1/b+1/c)[(1/a+1/b+1/c)²-4(1/ab+1/ac+1/bc)]+6/abc,右边等于(1/a+1/b+1/c)²-2(1/ab+1/ac+1/bc),代入①②得到 abc = 3 ③
由①②③可以写出1/a, 1/b, 1/c 共同满足的三次方程是 x³-3x²+2x-1/3=0
也可以直接求出 (a+3)(b+3)(c+3) = abc(1+3/a)(1+3/b)(1+3/c) = 3×(1+3×3+9×2+9) =111