源2.0-M32量化版是“源”大模型团队为进一步提高模算效率,降低大模型部署运行的计算资源要求而推出的版本,通过采用领先的量化技术,将原模型精度量化至int4和int8级别,并保持模型性能基本不变。源2.0-M32量化版提高了模型部署加载速度和多线程推理效率,在不同硬件和软件环境中均能高效运行,降低了模型移植和部署门槛,让用户使用更少的计算资源,就能获取源2.0-M32大模型的强大能力。
源2.0-M32大模型是浪潮信息“源2.0”系列大模型的最新版本,其创新性地提出和采用了“基于注意力机制的门控网络”技术,构建包含32个专家(Expert)的混合专家模型(MoE),模型运行时激活参数为37亿,在业界主流基准评测中性能全面对标700亿参数的LLaMA3开源大模型,大幅提升了模型算力效率。
模型量化(Model Quantization)是优化大模型推理的一种主流技术,它显著减少了模型的内存占用和计算资源消耗,从而加速推理过程。然而,模型量化可能会影响模型的性能。如何在压缩模型的同时维持其精度,是量化技术面临的核心挑战。