【算法时间复杂度】
在写算法时的衡量的标准,时间复杂度,和空间复杂度。
定义:在进行算法分析时,语句总的执行次数T(n)是关于问题规模n的函数,进而分析T(n)随n的变化情况并确定T(n)的数量级。算法的时间复杂度,也就是算法的时间度量,记作:T(n) = O(f(n))。它表示随问题规模n的增大,算法执行时间的增长率和f(n)的增长率相同,称作算法的渐进时间复杂度,简称为时间复杂度。其中f(n)是问题规模n的某个函数。
这样用大写O()来体现算法时间复杂度的记法,称之为大O记法。
【推导大O阶】
用常数1取代运行时间中的所有加法常数
在修改后的运行次数函数中,只保留最高阶项。
如果最高阶项存在且不是1,则去除与这个项相乘的常数。
得到的结果就是大O阶。
常用的时间复杂度所消耗的时间从小到大依次是:
O(1) < O(logn) < O(n) < O(nlogn) < O(n(2)) < O(n(3)) < O(2(2)) < O(n!) < O(n(n))